Динамика системы. Общие теоремы динамики точки Основные теоремы динамики теоретическая механика

Теорема о движении центра масс. Дифференциальные уравнения движения механической системы. Теорема о движении центра масс механической системы. Закон сохранения движения центра масс.

Теорема об изменении количества движения. Количество движения материальной точки. Элементарный импульс силы. Импульс силы за конечный промежуток времени. Теорема об изменении количества движения точки в дифференциальной и в конечной формах.

Количество движения механической системы; его выражение через массу системы и скорость ее центра масс. Теорема об изменении количества движения механической системы в дифференциальной и в конечной формах. Закон сохранения количества движения механической системы.

Теорема об изменении момента количества движения. Момент количества движения материальной точки относительно центра и относительно оси. Теорема об изменении момента количества движения точки.

Главный момент количеств движения или кинетический момент механической системы относительно центра и относительно оси. Кинетический момент вращающегося твердого тела относительно оси вращения. Теорема об изменении кинетического момента механической системы. Закон сохранения кинетического момента механической системы.

Теорема об изменении кинетической энергии. Кинетическая энергия материальной точки. Элементарная работа силы; аналитическое выражение элементарной работы. Работа силы на конечном перемещении точки ее приложения. Работа силы тяжести, силы упругости и силы тяготения. Мощность. Теорема об изменении кинетической энергии точки.

Кинетическая энергия механической системы. Кинетическая энергия твердого тела при поступательном движении, при вращении вокруг неподвижной оси и при плоскопараллельном движении тела. Теорема об изменении кинетической энергии механической системы. Равенство нулю суммы работ внутренних сил в твердом теле. Работа и мощность сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси.

Принцип Даламбера. Принцип возможных перемещений. Сила инерции материальной точки. Принцип Даламбера для материальной точки и механической системы.

Довольно часто удается выделить важные особенности движения механической системы, не прибегая к интегрированию системы дифференциальных уравнений движения. Это достигается применением общих теорем динамики.

5.1. Основные понятия и определения

Внешние и внутренние силы. Любая сила, действующая на точку механической системы, обязательно является либо активной силой, либо реакцией связи. Всю совокупность сил, действующих на точки системы, можно разделить на два класса иначе: на внешние силы и внутренние силы (индексы е и i - от латинских слов externus - внешний и internus - внутренний). Внешними называются силы, действующие на точки системы со стороны точек и тел, не входящих в состав рассматриваемой системы. Внутренними называются силы взаимодействия между точками и телами рассматриваемой системы.

Это разделение зависит от того, какие материальные точки и тела включены исследователем в рассматриваемую механическую систему. Если расширить состав системы, включив в нее дополнительно точки и тела, то некоторые силы, которые для прежней системы были внешними, для расширенной системы могут стать внутренними.

Свойства внутренних сил. Поскольку эти силы являются силами взаимодействия между частями системы, они входят в полную систему внутренних сил «двойками», организованными в соответствии с аксиомой действия-противодействия. У каждой такой «двойки» сил

главный вектор и главный момент относительно произвольного центра равны нулю. Так как полная система внутренних сил состоит только из «двоек», то

1) главный вектор системы внутренних сил равен нулю,

2) главный момент системы внутренних сил относительно произвольной точки равен нулю.

Массой системы называется арифметическая сумма масс тк всех точек и тел, образующих систему:

Центром масс (центром инерции) механической системы называется геометрическая точка С, радиус-вектор и координаты которой определяются формулами

где - радиусы-векторы и координаты точек, образующих систему.

Для твердого тела, находящегося в однородном поле тяжести, положения центра масс и центра тяжести совпадают, в других случаях это разные геометрические точки.

Вместе с инерциальной системой отсчета часто рассматривают одновременно неинерциальную систему отсчета, движущуюся поступательно. Ее оси координат (оси Кёнига) выбирают так, чтобы начало отсчета С постоянно совпадало с центром масс механической системы. В соответствии с определением центр масс неподвижен в осях Кёнига и находится в начале координат.

Моментом инерции системы относительно оси называется скалярная величина равная сумме произведений масс тк всех точек системы на квадраты их расстояний до оси:

Если механической системой является твердое тело, для нахождения 12 можно воспользоваться формулой

где - плотность, объем, занимаемый телом.

Рассмотрим движение некоторой системы материальных томен относительно неподвижной системы координат Когда система несвободна, то ее можно рассматривать как свободную, если отбросить наложенные на систему связи и заменить их действие соответствующими реакциями.

Разобьем все силы, приложенные к системе, на внешние и внутренние; в те и другие могут входить реакции отброшенных

связей. Через и обозначим главный вектор и главный момент внешних сил относительно точки А.

1. Теорема об изменении количества движения. Если - количество движения системы, то (см. )

т. е. справедлива теорема: производная по времени от количества движения системы равняется главному вектору всех внешних сил.

Заменяя вектор через его выражение где - масса-системы, - скорость центра масс, уравнению (4.1) можно придать другую форму:

Это равенство означает, что центр масс системы движется, как материальная точкащ масса которой равна массе системы и к которой приложена сила, геометрически равная главному вектору всех внешних сил системы. Последнее утверждение называют теоремой о движении центра масс (центра инерции) системы.

Если то из (4.1) следует, что вектор количества движения постоянен по величине и направлению. Проектируя его на оси координат, получим три скалярных первых интеграла, дифференциальных уравнений двнзкепня системы:

Эти интегралы носят назвапие интегралов количества движения. При скорость центра масс постоянна, т. е. он движется равномерно и прямолинейно.

Если проекция главного вектора внешних сил на какую-либо одну ось, например на ось равна нулю, то имеем один первый интеграл или если же равны нулю» две проекции главного вектора, то существует два интеграла количества движения.

2. Теорема об изменении кинетического момента. Пусть А - некоторая произвольная точка пространства (движущаяся или неподвижная), которая не обязательно совпадает с какой-либо определенной материальной точкой системы во все время движения. Ее скорость в неподвижной спстеме координат обозначим через Теорема об изменении кинетического момента материальной системы относительно точки А имеет вид

Если точка А неподвижна, то и равенство (4.3) принимает более простой вид:

Это равенство выражает теорему об пзмепении кинетического момента системы относительно неподвижной точки: производная по времени от кинетического момента системы, вычисленного относительно некоторой неподвижной точки, равняется главному моменту всех внешних сил относительно этой точки.

Если то согласно (4.4) вектор кинетического момента постоянен по величине и направлению. Проектируя его на оси координат, получим скалярных первых интеграла дифференциальных уравнений двпжеиия системы:

Эти интегралы посят название интегралов кинетического момента или интегралов площадей.

Если точка А совпадает с центром масс системы, то Тогда первое слагаемое в правой части равенства (4.3) обращается в нуль и теорема об изменении кинетического момента имеет ту же форму записи (4.4), что и в случае неподвижной точки А. Отметим (см. п. 4 § 3), что в рассматриваемом случае абсолютный кинетический момент системы в левой части равенства (4.4) может быть заменен равный ему кинетический момент системы в ее движении относительно центра масс.

Пусть - некоторая неизменная ось пли ось неизменного направления, проходящая через центр масс системы, а - кинетический момент системы относительно этой оси. Из (4.4) следует, что

где - момент внешних сил относительно оси . Если во все время движения то имеем первый интеграл

В работах С. А. Чаплыгина получено несколько обобщений теоремы об изменении кинетического момента, которые применены затем при решении ряда задач о качении шаров. Дальнейшие обобщения теоремы об изменении кпнетпческога момента и их приложения в задачах дннамики твердого тела содержатся в работах . Основные результаты этих работ связаны с теоремой об изменении кинетического момента относительно подвижной , постоянно проходящей через некоторую движущуюся точку А. Пусть - единичный вектор, направленный вдоль этой оси. Умножив скалярно на обе части равенства (4.3) и добавив к его обепм частям слагаемое получим

При выполнении кинематического условия

из (4.7) следует уравнение (4.5). И если во все время движения и выполняется условие (4.8), то существует первый интеграл (4.6).

Если связи системы идеальны и допускают в числе виртуальных перемещений вращения системы как твердого тела вокруг оси и, то главный момент реакций относительно оси и равен нулю , и тогда величина в правой части уравнения (4.5) представляет собой главный момент всех внешних активных сил относительно оси и. Равенство нулю этого момента и выполнимость соотношения (4.8) будут в рассматриваемом случае достаточными условиями для существования интеграла (4.6).

Если направление оси и неизменно то условие (4.8) запишется в виде

Это равенство означает, что проекции скорости центра масс и скорости точки А оси и на плоскость, перпендикулярную этой являются параллельными. В работе С. А. Чаплыгина вместо (4.9) требуется выполнение менее общего условия где X - произвольная постоянная величина.

Заметим, что условие (4.8) не зависит от выбора точки на . Действительно , пусть Р - произвольная точка на оси . Тогда

и, следовательно,

В заключение отметим геометрическую интерпретацию Резаля уравнений (4.1) и (4.4): векторы абсолютных скоростей концов векторов и равны соогвегственно главному вектору и главному моменту всех внешних сил относительно точки А.

Использование ОЗМС при решении задач связано с определенными трудностями. Поэтому обычно устанавливают дополнительные соотношения между характеристиками движения и сил, которые более удобны для практического применения. Такими соотношениями являются общие теоремы динамики. Они, являясь следствиями ОЗМС, устанавливают зависимости между быстротой изменения некоторых специально введенных мер движения и характеристиками внешних сил.

Теорема об изменении количества движения. Введем понятие вектора количества движения (Р. Декарт) материальной точки (рис. 3.4):

Я і = т V г (3.9)

Рис. 3.4.

Для системы вводим понятие главного вектора количества движения системы как геометрической суммы:

Q = Y, m " V r

В соответствии с ОЗМС: Хю,-^=я) , или X

R (E) .

С учетом, того /w, = const получим: -Ym,!" = R (E) ,

или в окончательном виде

дО/ді = А (Е (3.11)

т.е. первая производная по времени главного вектора количества движения системы равна главному вектору внешних сил.

Теорема о движении центра масс. Центром масс системы называют геометрическую точку, положение которой зависит от т, и т.е. от распределения масс /г/, в системе и определяется выражением радиуса-вектора центра масс (рис. 3.5):

где г с - радиус-вектор центра масс.

Рис. 3.5.

Назовем = т с массой системы. После умножения выраже-

ния (3.12) на знаменатель и дифференцирования обеих частей полу-

ценного равенства будем иметь: г с т с = ^т.У. = 0, или 0 = т с У с.

Таким образом, главный вектор количества движения системы равен произведению массы системы и скорости центра масс. Используя теорему об изменении количества движения (3.11), получим:

т с дУ с /ді = А (Е) , или

Формула (3.13) выражает теорему о движении центра масс: центр масс системы движется как материальная точка, обладающая массой системы, на которую действует главный вектор внешних сил.

Теорема об изменении момента количества движения. Введем понятие момента количества движения материальной точки как векторное произведение ее радиуса-вектора и количества движения:

к о, = бл х т, У , (3.14)

где к ОІ - момент количества движения материальной точки относительно неподвижной точки О (рис. 3.6).

Теперь определим момент количества движения механической системы как геометрическую сумму:

К() = X ко, = ЩУ, ? О-15>

Продифференцировав (3.15), получим:

Ґ сік --- х т і У. + г ю х т і

Учитывая, что = У Г У і х т і У і = 0, и формулу (3.2), получим:

сіК а /с1ї - ї 0 .

На основании второго выражения в (3.6) окончательно будем иметь теорему об изменении момента количества движения системы:

Первая производная по времени от момента количества движения механической системы относительно неподвижного центра О равна главному моменту внешних сил, действующих на эту систему, относительно того же центра.

При выводе соотношения (3.16) предполагалось, что О - неподвижная точка. Однако можно показать, что и в ряде других случаев вид соотношения (3.16) не изменится, в частности, если при плоском движении моментную точку выбрать в центре масс, мгновенном центре скоростей или ускорений. Кроме этого, если точка О совпадает с движущейся материальной точкой, равенство (3.16), записанное для этой точки обратится в тождество 0 = 0.

Теорема об изменении кинетической энергии. При движении механической системы изменяется как «внешняя», так и внутренняя энергия системы. Если характеристики внутренних сил, главный вектор и главный момент, не сказываются на изменении главного вектора и главного момента количества ускорений, то внутренние силы могут входить в оценки процессов энергетического состояния системы. Поэтому при рассмотрении изменений энергии системы приходится рассматривать движения отдельных точек, к которым приложены также и внутренние силы.

Кинетическую энергию материальной точки определяют как величину

Т^туЦг. (3.17)

Кинетическая энергия механической системы равна сумме кинетических энергий материальных точек системы:

Заметим, что Т > 0.

Определим мощность силы, как скалярное произведение вектора силы на вектор скорости:

ТЕОРЕМА КОЛИЧЕСТВА ДВИЖЕНИЯ (в дифференциальной форме) .

1. Для точки: производная от количества движения точки по времени равна равнодействующей приложенных к точке сил :

или в координатной форме:

2. Для системы: производная от количества движения системы по времени равна главному вектору внешних сил системы (векторной сумме внешних сил , приложенных к системе):

или в координатной форме:

ТЕОРЕМА ИМПУЛЬСОВ (теорема количества движения в конечной форме).

1. Для точки: изменение количества движения точки за конечный промежуток времени равно сумме импульсов, приложенных к точке сил (или импульсу равнодействующей приложенных к точке сил)

или в координатной форме:

2. Для системы: изменение количества движения системы за конечный промежуток времени равно сумме импульсов внешних сил:

или в координатной форме:

Следствия: при отсутствии внешних сил количество движения системы есть величина постоянная; если внешние силы системы перпендикулярны некоторой оси, то проекция количества движения на эту ось есть величина постоянная.

ТЕОРЕМА О МОМЕНТЕ КОЛИЧЕСТВА ДВИЖЕНИЯ

1. Для точки: Производная по времени от момента количества движения точки относительно некоторого центра (оси) равна сумме моментов приложенных к точке сил относительно того же центра (оси):

2. Для системы:

Производная по времени от момента количества движения системы относительно некоторого центра (оси) равна сумме моментов внешних сил системы относительно того же центра (оси):

Следствия: если внешние силы системы не дают момента относительно данного центра (оси), то момент количества движения системы относительно этого центра (оси) есть величина постоянная.

Если силы, приложенные к точке, не дают момента относительно данного центра, то момент количества движения точки относительно этого центра есть величина постоянная и точка описывает плоскую траекторию.

ТЕОРЕМА О КИНЕТИЧЕСКОЙ ЭНЕРГИИ

1. Для точки: изменение кинетической энергии точки на конечном ее перемещении равно работе приложенных к ней активных сил (касательные составляющие реакций неидеальных связей включаются в число активных сил):

Для случая относительного движения: изменение кинетической энергии точки при относительном движении равно работе приложенных к ней активных сил и переносной силы инерции (см. "Частные случаи интегрирования") :

2. Для системы: изменение кинетической энергии системы на некотором перемещении ее точек равно работе приложенных к ней внешних активных сил и внутренних сил, приложенных к точкам системы, расстояние между которыми меняется:

Если система неизменяема (твердое тело), то ΣA i =0 и изменение кинетической энергии равно работе только внешних активных сил.

ТЕОРЕМА О ДВИЖЕНИИ ЦЕНТРА МАСС МЕХАНИЧЕСКОЙ СИСТЕМЫ . Центр масс механической системы движется как точка, масса которой равна массе всей системы M=Σm i , к которой приложены все внешние силы системы:

или в координатной форме:

где - ускорение центра масс и его проекции на оси декартовых координат; внешняя сила и ее проекции на оси декартовых координат.

ТЕОРЕМА ИМПУЛЬСОВ ДЛЯ СИСТЕМЫ, ВЫРАЖЕННАЯ ЧЕРЕЗ ДВИЖЕНИЕ ЦЕНТРА МАСС.

Изменение скорости центра масс системы за конечный промежуток времени равно импульсу внешних сил системы за тот же промежуток времени, деленному на массу всей системы.