Химическая формула фенола. Фенолы — номенклатура, получение, химические свойства

Фенолы - производные ароматических углеводородов, в состав которых могут входить одна или несколько гидроксильных групп, соединенных с бензольным кольцом.

Как называть фенолы?

По правилам ИЮПАК сохраняется название «фенол ». Нумерация атомов идет от атома , который непосредственно связан с гидрокси-группой (если она - старшая) и нумеруют так, чтобы заместители получили наименьший номер.

Представитель - фенол - С 6 Н 5 ОН :

Строение фенола.

У атома кислорода на внешнем уровне находится неподеленная электронная пара, которая «втягивается» в систему кольца (+М-эффект ОН -группы). В результате могут возникнуть 2 эффекта:

1) повышение электронной плотности бензольного кольца в положения орто- и пара-. В основном, такой эффект проявляется в реакциях электрофильного замещения.

2) уменьшается плотность на атоме кислорода, вследствие чего связь О-Н ослабляется и может рваться. Эффект связан с повышенной кислотности фенола по сравнению с предельными спиртами.

Монозамещенные производные фенола (крезол) могут быть в 3х структурных изомерах:

Физические свойства фенолов.

Фенолы - кристаллические вещества при комнатой температуре. Плохо растворимы в холодной воде , но хорошо - в горячей и в водных растворах щелочей. Обладают характерным запахом. Вследствие образования водородных связей, обладают высокой температурой кипения и плавления.

Получение фенолов.

1. Из галогенбензолов. При нагревании хлорбензола и гидроксида натрия под давлением получают фенолят натрия, который после взаимодействия с кислотой , превращается в фенол:

2. Промышленный способ: при каталитическом окислении кумола на воздухе получается фенол и ацетон:

3. Из ароматических сульфокислот с помощью сплавления с щелочами. Чаще проводят реакцию для получения многоатомных фенолов:

Химические свойства фенолов.

р -орбиталь атома кислорода образует с ароматическим кольцом единую систему. Поэтому электронная плотность на атоме кислороде уменьшается, в бензольном кольце - увеличивается. Полярность связи О-Н повышается, и водород гидроксильной группы становится более реакционоспособным и легко может быть замещен атомом металла даже при действии щелочей.

Кислотность фенолов выше, чем у спиртов, поэтому можно проводить реакции:

Но фенол - слабая кислота. Если через его соли пропускать углекислый или сернистый газ, то выделяется фенол, что доказывает, что угольная и сернистая кислота являются более сильными кислотами:

Кислотные свойства фенолов ослабляются при введении в кольцо заместителей I рода и усиливаются - при введении II.

2) Образование сложных эфиров. Процесс протекает при воздействие хлорангидридов:

3) Реакция электрофильного замещения. Т.к. ОН -группа является заместителем первого рода, то реакционная способность бензольного кольца в орто- и пара- положениях повышается. При действии на фенол бромной воды наблюдается выделение осадка - это качественная реакция на фенол:

4) Нитрование фенолов. Реакцию проводят нитрирующей смесью, в результате чего образуется пикриновая кислота:

5) Поликонденсация фенолов. Реакция протекает под воздействии катализаторов:

6) Окисление фенолов. Фенолы легко окисляются кислородом воздуха:

7) Качественной реакцией на фенол является воздействие раствора хлорида железа и образование комплекса фиолетового цвета.

Применение фенолов.

Фенолы используют при получении фенолформальдегидных смол, синтетических волокон, красителей и лекарственных средств, дезинфицирующих веществ. Пикриновая кислота используется в качестве взрывчатых веществ.

Образованные на основе бензола. При нормальных условиях представляют собой твердые ядовитые вещества, обладающие специфическим ароматом. В современной промышленности эти химические соединения играют далеко не последнюю роль. По объемам использования фенол и его производные входят в двадцатку наиболее востребованных химических соединений в мире. Они широко применяются в химической и легкой промышленности, фармацевтике и энергетике. Поэтому получение фенола в промышленных масштабах - одна из основных задач химической промышленности.

Обозначения фенола

Первоначальное название фенола - карболовая кислота. Позднее данное соединение поучило название «фенол». Формула этого вещества представлена на рисунке:

Нумерация атомов фенола ведется от того атома углерода, который соединен с гидроксогруппой ОН. Последовательность продолжается в таком порядке, чтобы другие замещенные атомы получили наименьшие номера. Производные фенола существуют в виде трех элементов, характеристики которых объясняются различием их структурных изомеров. Различные орто-, мета-, паракрезолы являются лишь видоизменением основной структуры соединения бензольного кольца и гидроксильной группы, базовая комбинация которой и представляет собой фенол. Формула этого вещества в химической записи выглядит как C 6 H 5 OH.

Физические свойства фенола

Визуально фенол представляет собой твердые бесцветные кристаллы. На открытом воздухе они окисляются, придавая веществу характерный розовый оттенок. При нормальных условиях фенол довольно плохо растворяется в воде, но с повышением температуры до 70 о этот показатель резко возрастает. В щелочных растворах это вещество растворимо в любых количествах и при любых температурах.

Эти свойства сохраняются и в других соединениях, основным компонентом которых являются фенолы.

Химические свойства

Уникальные свойства фенола объясняются его внутренней структурой. В молекуле этого химического вещества р-орбиталь кислорода образует единую п-систему с бензольным кольцом. Такое плотное взаимодействие повышает электронную плотность ароматического кольца и понижает этот показатель у атома кислорода. При этом полярность связей гидроксогруппы значительно увеличивается, и водород, входящий в ее состав, легко замещается любым щелочным металлом. Так образуются различные феноляты. Эти соединения не разлагаются водой, как алкоголяты, но их растворы очень похожи на соли сильных оснований и слабых кислот, поэтому они имеют достаточно выраженную щелочную реакцию. Феноляты взаимодействуют с различными кислотами, в результате реакции восстанавливаются фенолы. Химические свойства этого соединения позволяют ему взаимодействовать с кислотами, образуя при этом сложные эфиры. Например, взаимодействие фенола и уксусной кислоты приводит к образованию финилового эфира (фениацетата).

Широко известна реакция нитрирования, в которой под воздействием 20% азотной кислоты фенол образует смесь пара- и ортонитрофенолов. Если воздействовать на фенол концентрированной азотной кислотой, то получается 2,4,6-тринитрофенол, который иногда называют пикриновой кислотой.

Фенол в природе

Как самостоятельное вещество фенол в природе содержится в каменноугольной смоле и в отдельных сортах нефти. Но для промышленных нужд это количество не играет никакой роли. Поэтому получение фенола искусственным способом стало приоритетной задачей для многих поколений ученых. К счастью, эту проблему удалось разрешить и получить в итоге искусственный фенол.

Свойства, получение

Применение различных галогенов позволяет получать феноляты, из которых при дальнейшей обработке образуется бензол. Например, нагревание гидроксида натрия и хлорбензола позволяет получить натрия фенолят, который при воздействии кислоты распадается на соль, воду и фенол. Формула такой реакции приведена здесь:

С 6 Н 5 -CI + 2NaOH -> С 6 Н 5 -ONa + NaCl + Н 2 O

Ароматические сульфокислоты также являются источником для получения бензола. Химическая реакция проводится при одновременном плавлении щелочи и сульфокислоты. Как видно из реакции, сначала образуются феноксиды. При обработке сильными кислотами они восстанавливаются до многоатомных фенолов.

Фенол в промышленности

В теории, получение фенола самым простым и многообещающим способом выглядит таким образом: при помощи катализатора бензол окисляют кислородом. Но до сих пор катализатор для этой реакции так и не был подобран. Поэтому в настоящее время в промышленности используются другие методы.

Непрерывный промышленный способ получения фенола состоит во взаимодействии хлорбензола и 7% раствора едкого натра. Полученную смесь пропускают через полуторакилометровую систему труб, нагретых до температуры в 300 С. Под воздействием температуры и поддерживаемого высокого давления исходные вещества вступают в реакцию, в результате которой получат 2,4-динитрофенол и другие продукты.

Не так давно был разработан промышленный способ получения фенолсодержащих веществ кумольным методом. Этот процесс состоит из двух этапов. Сначала из бензола получают изопропилбензол (кумол). Для этого бензол алкируют с помощью пропилена. Реакция выглядит следующим образом:

После этого кумол окисляют кислородом. На выходе второй реакции получают фенол и другой важный продукт — ацетон.

Получение фенола в промышленных масштабах возможно из толуола. Для этого толуол окисляется на кислороде, содержащемся в воздухе. Реакция протекает в присутствии катализатора.

Примеры фенолов

Ближайшие гомологи фенолов называются крезолами.

Существуют три разновидности крезолов. Мета-крезол при нормальных условиях представляет собой жидкость, пара-крезол и орто-крезол - твердые вещества. Все крезолы плохо растворяются в воде, а по своим химическим свойствами они почти аналогичны фенолу. В естественном виде крезолы содержатся в каменноугольной смоле, в промышленности их применяют при производстве красителей, некоторых видов пластмасс.

Примерами двухатомных фенолов могут служить пара-, орто- и мета-гидробензолы. Все они представляют собой твердые вещества, легко растворимые в воде.

Единственный представитель трехатомного фенола - пирогаллол (1,2,3-тригидроксибензол). Его формула представлена ниже.

Пирогаллол является довольно сильным восстановителем. Он легко окисляется, поэтому его используют для получения очищенных от кислорода газов. Это вещество хорошо известно фотографам, его используют как проявитель.

Образованные на основе бензола. При нормальных условиях представляют собой твердые ядовитые вещества, обладающие специфическим ароматом. В современной промышленности эти химические соединения играют далеко не последнюю роль. По объемам использования фенол и его производные входят в двадцатку наиболее востребованных химических соединений в мире. Они широко применяются в химической и легкой промышленности, фармацевтике и энергетике. Поэтому получение фенола в промышленных масштабах - одна из основных задач химической промышленности.

Обозначения фенола

Первоначальное название фенола - карболовая кислота. Позднее данное соединение поучило название «фенол». Формула этого вещества представлена на рисунке:

Нумерация атомов фенола ведется от того атома углерода, который соединен с гидроксогруппой ОН. Последовательность продолжается в таком порядке, чтобы другие замещенные атомы получили наименьшие номера. Производные фенола существуют в виде трех элементов, характеристики которых объясняются различием их структурных изомеров. Различные орто-, мета-, паракрезолы являются лишь видоизменением основной структуры соединения бензольного кольца и гидроксильной группы, базовая комбинация которой и представляет собой фенол. Формула этого вещества в химической записи выглядит как C 6 H 5 OH.

Физические свойства фенола

Визуально фенол представляет собой твердые бесцветные кристаллы. На открытом воздухе они окисляются, придавая веществу характерный розовый оттенок. При нормальных условиях фенол довольно плохо растворяется в воде, но с повышением температуры до 70 о этот показатель резко возрастает. В щелочных растворах это вещество растворимо в любых количествах и при любых температурах.

Эти свойства сохраняются и в других соединениях, основным компонентом которых являются фенолы.

Химические свойства

Уникальные свойства фенола объясняются его внутренней структурой. В молекуле этого химического вещества р-орбиталь кислорода образует единую п-систему с бензольным кольцом. Такое плотное взаимодействие повышает электронную плотность ароматического кольца и понижает этот показатель у атома кислорода. При этом полярность связей гидроксогруппы значительно увеличивается, и водород, входящий в ее состав, легко замещается любым щелочным металлом. Так образуются различные феноляты. Эти соединения не разлагаются водой, как алкоголяты, но их растворы очень похожи на соли сильных оснований и слабых кислот, поэтому они имеют достаточно выраженную щелочную реакцию. Феноляты взаимодействуют с различными кислотами, в результате реакции восстанавливаются фенолы. Химические свойства этого соединения позволяют ему взаимодействовать с кислотами, образуя при этом сложные эфиры. Например, взаимодействие фенола и уксусной кислоты приводит к образованию финилового эфира (фениацетата).

Широко известна реакция нитрирования, в которой под воздействием 20% азотной кислоты фенол образует смесь пара- и ортонитрофенолов. Если воздействовать на фенол концентрированной азотной кислотой, то получается 2,4,6-тринитрофенол, который иногда называют пикриновой кислотой.

Фенол в природе

Как самостоятельное вещество фенол в природе содержится в каменноугольной смоле и в отдельных сортах нефти. Но для промышленных нужд это количество не играет никакой роли. Поэтому получение фенола искусственным способом стало приоритетной задачей для многих поколений ученых. К счастью, эту проблему удалось разрешить и получить в итоге искусственный фенол.

Свойства, получение

Применение различных галогенов позволяет получать феноляты, из которых при дальнейшей обработке образуется бензол. Например, нагревание гидроксида натрия и хлорбензола позволяет получить натрия фенолят, который при воздействии кислоты распадается на соль, воду и фенол. Формула такой реакции приведена здесь:

С 6 Н 5 -CI + 2NaOH -> С 6 Н 5 -ONa + NaCl + Н 2 O

Ароматические сульфокислоты также являются источником для получения бензола. Химическая реакция проводится при одновременном плавлении щелочи и сульфокислоты. Как видно из реакции, сначала образуются феноксиды. При обработке сильными кислотами они восстанавливаются до многоатомных фенолов.

Фенол в промышленности

В теории, получение фенола самым простым и многообещающим способом выглядит таким образом: при помощи катализатора бензол окисляют кислородом. Но до сих пор катализатор для этой реакции так и не был подобран. Поэтому в настоящее время в промышленности используются другие методы.

Непрерывный промышленный способ получения фенола состоит во взаимодействии хлорбензола и 7% раствора едкого натра. Полученную смесь пропускают через полуторакилометровую систему труб, нагретых до температуры в 300 С. Под воздействием температуры и поддерживаемого высокого давления исходные вещества вступают в реакцию, в результате которой получат 2,4-динитрофенол и другие продукты.

Не так давно был разработан промышленный способ получения фенолсодержащих веществ кумольным методом. Этот процесс состоит из двух этапов. Сначала из бензола получают изопропилбензол (кумол). Для этого бензол алкируют с помощью пропилена. Реакция выглядит следующим образом:

После этого кумол окисляют кислородом. На выходе второй реакции получают фенол и другой важный продукт — ацетон.

Получение фенола в промышленных масштабах возможно из толуола. Для этого толуол окисляется на кислороде, содержащемся в воздухе. Реакция протекает в присутствии катализатора.

Примеры фенолов

Ближайшие гомологи фенолов называются крезолами.

Существуют три разновидности крезолов. Мета-крезол при нормальных условиях представляет собой жидкость, пара-крезол и орто-крезол - твердые вещества. Все крезолы плохо растворяются в воде, а по своим химическим свойствами они почти аналогичны фенолу. В естественном виде крезолы содержатся в каменноугольной смоле, в промышленности их применяют при производстве красителей, некоторых видов пластмасс.

Примерами двухатомных фенолов могут служить пара-, орто- и мета-гидробензолы. Все они представляют собой твердые вещества, легко растворимые в воде.

Единственный представитель трехатомного фенола - пирогаллол (1,2,3-тригидроксибензол). Его формула представлена ниже.

Пирогаллол является довольно сильным восстановителем. Он легко окисляется, поэтому его используют для получения очищенных от кислорода газов. Это вещество хорошо известно фотографам, его используют как проявитель.

Фенолы — общее название ароматических спиртов. По своим свойствам вещества являются слабыми кислотами. Важное практическое значение имеют многие гомологи гидроксибензола С 6 Н 5 0Н (формула фенола) — простейшего представителя класса. Остановимся на этом подробнее.

Фенолы. Общая формула и классификация

Общая формула органических веществ, относящихся к ароматическим спиртам, — R-OH. Молекулы собственно фенолов и крезолов образованы радикалом - фенилом С6Н5, с которым непосредственно соединяется одна или несколько гидроксильных групп OH (оксигрупп). По их числу в молекуле фенолы классифицируются на одно-, двух- и многоатомные. Одноатомными соединениями этого типа являются фенол и крезол. Наиболее распространенные среди многоатомных гидроксибензолов — нафтолы, которые содержат в своем составе 2 конденсированных ядра.

Фенол — представитель ароматических спиртов

Текстильщикам фенол был известен уже в XVIII веке: ткачи использовали его в качестве красителя. При перегонке каменноугольной смолы в 1834 году химик из Германии Ф. Рунге выделил кристаллы этого вещества с характерным сладковатым запахом. Латинское название угля - carbo, поэтому соединение называли (карболкой). Немецкому исследователю не удалось определить состав вещества. Молекулярная формула фенола была установлена в 1842 годах О. Лораном, считавшим карболку производным бензола. Для новой кислоты употребляли наименование «фениловая». Шарль Жерар определил, что вещество является спиртом, и назвал его фенолом. Первоначальные области применения соединения — медицина, дубление кож, выпуск синтетических красителей. Характеристики рассматриваемого вещества:

  • Рациональная химическая формула — C 6 H 5 OH.
  • соединения — 94,11 а. е. м.
  • Брутто-формула, отражающая состав, — C 6 H 6 O.

Электронное и пространственное строение молекулы фенола

Циклическую структурную формулу бензола предложил немецкий химик-органик Ф. Кекуле в 1865 году, а незадолго до него — И. Лошмидт. Ученые представляли молекулу органического вещества в виде с чередующимися простыми и двойными связями. По современным представлениям, ароматическое ядро — это особый вид кольцевой структуры, получивший название «сопряженная связь».

Шесть атомов углерода С испытывают процесс sp 2 -гибридизации электронных орбиталей. Не участвующие в образовании С—С-связей р-электронные облака перекрываются над и под плоскостью ядра молекулы. Возникают две части общего электронного облака, которое охватывает все кольцо. Структурная формула фенола может выглядеть по-разному, учитывая исторический подход к описанию строения бензола. Чтобы подчеркнуть непредельный характер ароматических углеводородов, условно считают двойными три из шести связей, которые перемежаются с тремя простыми.

Поляризация связи в оксигруппе

В простейшем - бензоле С 6 Н 6 - электронное облако является симметричным. Формула фенола отличается на одну оксигруппу. Присутствие гидроксила нарушает симметрию, что находит отражение в свойствах вещества. Связь между кислородом и водородом в оксигруппе — полярная ковалентная. Смещение общей пары электронов к атому кислорода приводит к возникновению на нем отрицательного заряда (частичного). Водород лишается электрона и приобретает частичный заряд «+». Кроме того, кислород в О—Н-группе является обладателем двух неподеленных электронных пар. Одна из них притягивается электронным облаком ароматического ядра. По этой причине связь становится более поляризованной, легче замещается металлами. Модели дают представления о несимметричном характере молекулы фенола.

Особенности взаимовлияния атомов в феноле

Единое электронное облако ароматического ядра в молекуле фенола взаимодействует с гидроксильной группой. Происходит явление, получившее название сопряжения, в результате которого собственная пара электронов атома кислорода оксигруппы притягивается к системе бензольного цикла. Снижение отрицательного заряда компенсируется благодаря еще большей поляризации связи в группе О—Н.

В ароматическом ядре также изменяется система электронного распределения. Она понижается на углероде, который связан с кислородом, и повышается у ближайших к нему атомов, находящихся в орто-положениях (2 и 6). Сопряжение вызывает накопление на них заряда «-». Дальнейшее» смещение плотности — движение ее от атомов в мета-положениях (3 и 5) к углероду в пара-положении (4). Формула фенола для удобства изучения сопряжения и взаимовлияния обычно содержит нумерацию атомов бензольного кольца.

Объяснение химических свойств фенола на основе его электронного строения

Процессы сопряжения ароматического ядра и гидроксила сказываются на свойствах обеих частиц и всего вещества. Например, высокая электронная плотность у атомов в орто- и пара-положениях (2, 4, 6) делает С—Н-связи ароматического цикла фенола более реакционноспособными. Снижается отрицательный заряд атомов углерода в мета-положениях (3 и 5). Атаке электрофильных частиц в химических реакциях подвергается углерод, находящийся в орто- и пара-положениях. В реакции бромирования бензола изменения наступают при сильном нагревании и присутствии катализатора. Образуется моногалогенопроизводное — бромбензол. Формула фенола позволяет веществу реагировать с бромом практически мгновенно без нагревания смеси.

Ароматическое ядро влияет на полярность связи в оксигруппе, увеличивая ее. Атом водорода становится подвижнее, по сравнению с предельными спиртами. Фенол реагирует со щелочами, образуя соли - феноляты. Этанол не взаимодействует со щелочами, вернее, продукты реакции — этаноляты — разлагаются. В химическом плане фенолы — более сильные кислоты, чем спирты.

Представители класса ароматических спиртов

Брутто-формула гомолога фенола — крезола (метилфенола, гидрокситолуола) — C 7 H 8 O. Вещество в природном сырье часто сопутствует фенолу, тоже обладает антисептическими свойствами. Другие гомологи фенола:

  • Пирокатехин (1,2-гидроксибензол). Химическая формула — С 6 Н 4 (ОН) 2 .
  • Резорцин (1,3-гидроксибензол) — С 6 Н 4 (ОН) 2 .
  • Пирогаллол (1,2,3- тригидроксибензол) — С 6 Н 3 (ОН) 3 .
  • Нафтол. Брутто-формула вещества — C 10 H 7 OH. Применяется в производстве красителей, медикаментов, душистых соединений.
  • Тимол (2-изопропил-5-метилфенол). Химическая формула — C 6 H 3 CH 3 (OH)(C 3 H 7). Применяется в химии органического синтеза, медицине.
  • Ванилин, кроме фенольного радикала, содержит простую эфирную группу и остаток альдегида. Брутто-формула соединения — C 8 H 8 O 3 . Ванилин широко используется как искусственная отдушка.

Формула реактива для распознавания фенолов

Качественное определение фенола можно проводить с помощью брома. В результате выпадает белый осадок трибромфенола. Пирокатехин (1,2-гидроксибензол) окрашивается в зеленый цвет в присутствии растворенного хлорида трехвалентного железа. С этим же реагентом вступает в химическую реакцию фенол, и образуется трифенолят, обладающий фиолетовым цветом. Качественная реакция на резорцин — появление темно-фиолетового окрашивания в присутствии хлорида трехвалентного железа. Постепенно цвет раствора становится черным. Формула реактива, который служит для распознавания фенола и некоторых его гомологов, — FeCl 3 (хлорид железа (III)).

Гидроксибензол, нафтол, тимол — это все фенолы. Общая формула и состав веществ позволяет определить принадлежность этих соединение к ароматическому ряду. Все органические вещества, содержащие в своей формуле фенильный радикал С 6 Н 5 , с которым непосредственно связаны оксигруппы, проявляют особые свойства. От спиртов они отличаются лучше выраженным кислотным характером. По сравнению с веществами бензола, фенолы — более активные химические соединения.

Химические свойства фенолов определяются наличием в молекуле гидроксильной группы и бензольного кольца.

    Реакции по гидроксильной группе

Фенолы, так же, как и алифатические спирты, обладают кислыми свойствами, т.е. способны образовывать соли – феноляты . Однако они более сильные кислоты и поэтому могут взаимодействовать не только со щелочными металлами (натрий, литий, калий), но и со щелочами и карбонатами:

Константа кислотности рК а фенола равна 10. Высокая кислотность фенола связана с акцепторным свойством бензольного кольца (эффект сопряжения ) и объясняется резонансной стабилизацией образующегося фенолят-аниона. Отрицательный заряд на атоме кислорода фенолят-аниона за счет эффекта сопряжения может перераспределяться по ароматическому кольцу, этот процесс можно описать набором резонансных структур:

Ни одна из этих структур в отдельности не описывает реального состояния молекулы, но их использование позволяет объяснять многие реакции.

Феноляты легко взаимодействуют с галогеналканами и галогенангидридами:

Взаимодействие солей фенола с галогеналканами – реакция О-алкилирования фенолов. Это способ получения простых эфиров (реакция Вильямсона, 1852 г.).

Фенол способен взаимодействовать с галогенангидридами и ангидридами кислот с получением сложных эфиров (О-ацилирование):

Реакция протекает в присутствии небольших количеств минеральной кислоты или при нагревании.

    Реакции по бензольному кольцу

Гидроксил является электронодонорной группой и активирует орто - и пара -положения в реакциях электрофильного замещения:

Галогенирование

Галогенирование фенолов действием галогенов или галогенирующих агентов протекает с большой скоростью:

Нитрование

При действии азотной кислоты в уксусной кислоте (в присутствии небольшого количества серной кислоты) на фенол получается 2-нитрофенол:

Под действием концентрированной азотной кислоты или нитрующей смеси фенол интенсивно окисляется, что приводит к глубокой деструкции его молекулы. При использовании разбавленной азотной кислоты нитрование сопровождается сильным осмолением несмотря на охлаждение до 0°С и приводит к образованию о- и п- изомеров с преобладанием первого из них:

При нитровании фенола тетраоксидом диазота в инертном растворителе (бензол, дихлорэтан) образуется 2,4-динитрофенол:

Нитрование последнего нитрующей смесью протекает легко и может служить методом синтеза пикриновой кислоты:

Эта реакция идет с саморазогреванием.

Пикриновую кислоту получают также через стадию сульфирования. Для этого обрабатывают фенол при 100°С избыточным количеством серной кислоты, получают 2,4-дисульфопроизводное, которое не выделяя из реакционной меси обрабатывают дымящей азотной кислотой:

Введение двух сульфогрупп (также как и нитрогрупп) в бензольное ядро делает его устойчивым к окисляющему действию дымящей азотной кислоты, реакция не сопровождается осмолением. Такой метод получения пикриновой кислоты удобен для производства в промышленном масштабе.

Сульфирование . Сульфирование фенола в зависимости от температуры протекает в орто - или пара -положение:

Алкилирование и ацилирование по Фриделю-Крафтсу . Фенолы образуют с хлористым алюминием неактивные соли ArOAlCl 2 , поэтому для алкилирования фенолов в качестве катализаторов применяют протонные кислоты (H 2 SO 4) или металлооксидные катализаторы кислотного типа (Al 2 O 3). Это позволяет использовать в качестве алкилирующих агентов только спирты и алкены:

Алкилирование протекает последовательно с образованием моно-, ди- и триалкилфенолов. Одновременно происходит кислотно-катализируемая перегруппировка с миграцией алкильных групп:

Конденсация с альдегидами и кетонами . При действии щелочных или кислотных катализаторов на смесь фенола и альдегида жирного ряда происходит конденсация в о - и п -положениях. Эта реакция имеет очень большое практическое значение, так как лежит в основе получения важных пластических масс и лаковых основ. При обычной температуре рост молекулы за счет конденсации идет в линейном направлении:

Если реакцию проводить при нагревании, начинается конденсация с образованием разветвленных молекул:

В результате присоединения по всем доступным о - и п -положениям образуется трехмерный термореактивный полимер – бакелит. Бакелит отличается высоким электрическим сопротивлением и термостойкостью. Это один из первых промышленных полимеров.

Реакция фенола с ацетоном в присутствии минеральной кислоты приводит к получению бисфенола:

Последний используют для получения эпоксисоединений.

Реакция Кольбе – Шмидта. Синтез фенилкарбоновых кислот.

Феноляты натрия и калия реагируют с углекислым газом, образуя в зависимости от температуры орто- или пара-изомеры фенилкарбоновых кислот:

Окисление

Фенол легко окисляется под действием хромовой кислоты до п -бензохинона:

Восстановление

Восстановление фенола в циклогексанон используют для получения полиамида (найлон-6,6)